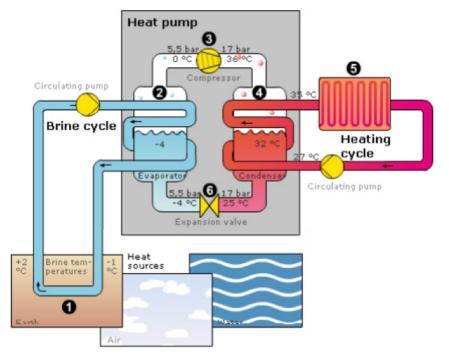


DIPARTIMENTO DI ENERGIA



NEEREA for Heat Pump Systems and On-field Monitoring Activities

Lebanese Center for Energy Conservation (LCEC) Department of Energy, Politecnico di Milano (PoliMi)

Beirut Energy Forum 2018 26th – 28th of September 2018, Beirut

Glen Dimplex Deutschland

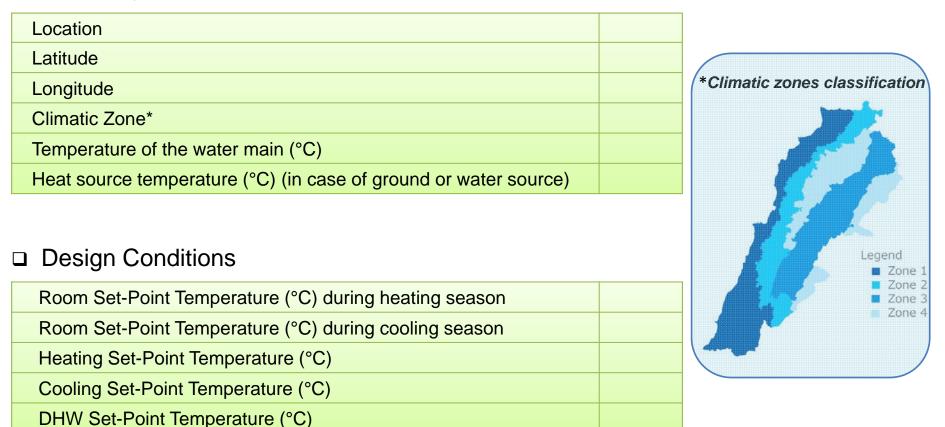
Beirut Energy Forum 2018

Motivations

Importance of proper **design**, **installation and control** to reach high performance

- definition of boundary and design conditions to identify the most suitable technology
- accurate <u>evaluation of energy needs</u> to choose: HP capacity, compressor type, integration with buffer tank, to guarantee <u>high SCOP</u>
- □ key role of <u>control logics</u>

NEEREA guidelines for heat pump projects


Beirut Energy Forum 2018

Structure

- 1. Introduction
- 2. Overview of preliminary study of HP appliance
- 3. Heat Pump system sizing
- 4. Post-Installation Measurements
- 5. Reference case
- 6. Financial Analysis
- 7. Green House Gas Emissions Reduction

3. Heat Pump System Sizing

Boundary Conditions

Beirut Energy Forum 2018

3. Heat Pump System Sizing

□ Energy Needs

Heating and cooling energy needs

Month	1	2	3	4	5	6	7	8	9	10	11	12	
Heating energy needs (kWh/month)													ANE .
Cooling energy needs (kWh/month)													

Domestic hot water energy needs

Hot Water Average liters Number of				Average daily hot water demand (liters/day)										
Use	per person	persons	1	2	3	4	5	6	7	8	9	10	11	12
Total d	aily Hot Wate (liters/day)													
)												
	Month		1	2	3	4	5	6	7	8	9	10	11	12

Month	1	2	3	4	5	6	7	8	9	10	11	12	
Hot water for sanitary use energy													
needs (kWh/month)													

Beirut Energy Forum 2018

3. Heat Pump System Sizing

□ Heat Pump Selection

	Number of heat pumps	
	Type of heat pumps (e.g. air-water, water-water)	
-	Type of refrigerant per heat pump	
	Number of compressors per heat pump	
	Inverter compressor (yes/no) per heat pump	
	Rated power output per heat pump (kW) (declare the operating conditions)	
	COP _{EN 14511} per heat pump (heating operating conditions)	
	EER _{EN 14511} per heat pump (cooling operating conditions)	
	Capacity of internal storage per heat pump (if present) (I)	

Push for Low Global Warming Potential refrigerants

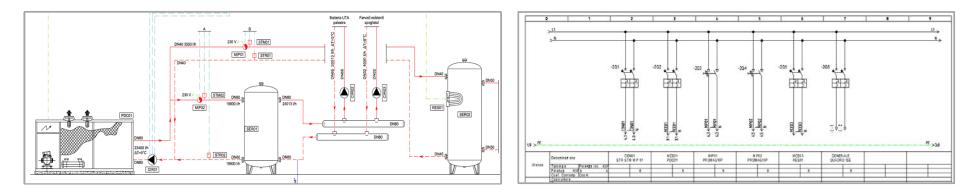
Kigali Amendment to the Montreal Protocol: Hidrofluorocarbons PHASE-DOWN

HFCs

e.g. R134A (GWP = 1 430), R410A (GWP = 2 088)

Alternative LGWP Refrigerants

e.g. CO2 (GWP = 1)


GWP = warming potential of 1 tonne of a greenhouse gas relative to 1 tonne of CO_2 , over a period of 100 years

Beirut Energy Forum 2018

3. Heat Pump System Sizing

□ Description of <u>calculation methods</u> to evaluate energy needs and design HP system

- accurate description of calculation methods
- if a simulation tool has been used, detail the inputs and attach the full simulation report
- Electrical and mechanical drawings

Beirut Energy Forum 2018

4. Post-Installation Measurements

Objective:

- Awareness of actual energy consumptions, operating conditions and HP on-field performance
- □ Fault Detection and Diagnosis
- The minimum set of monitoring data required:
- Energy consumption of the HP
- Thermal energy output of the HP
- HP operating temperatures

• Temperature and relative humidity for indoor and outdoor conditions

NEEREA Guidelines 12 4. Post-Installation Measurements 10 Two levels: 12

- 1. For simple system configurations: HP on-board sensors could be enough.
- 2. For more complex HP system configurations or HP thermal capacity > 20 kW,

additional measurements, e.g.:

- energy consumption of the auxiliaries
- thermal energy after the buffer tank
- T of the buffer tank

5. Reference case

Definition of a <u>reference case</u> to evaluate:

- energy savings
- cost savings
- green house gas emissions reduction

In case of building retrofit, refer to yearly consumptions of the existing system, that

will be replaced by the HP system.

6. Financial Analysis

The <u>cost analysis</u> of the HP system should involve:

- initial cost of purchase and installation
- maintenance cost
- energy cost analysis

Yearly energy cost savings

Thermal energy needs covered by the HP system (kWh)	Energy consumptions reference case (e.g. kWh _{el})	Energy cost reference case (USD)	Energy consumptions HP system (kWh _{el})	Energy cost HP system (USD)	Cost Savings (USD)

Beirut Energy Forum 2018

14

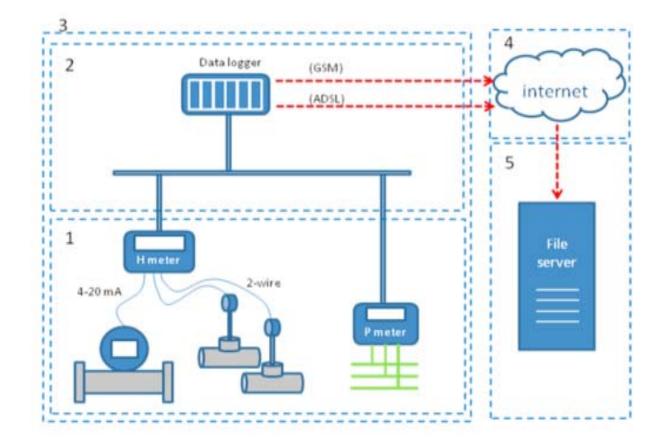
7. Green House Gas Emissions Reduction

Calculation of the avoided green house gas emissions.

Greenhouse emissions factors

Fuel Type	Lower Heating Value (TJ/Gg)	Effective CO ₂ emission factor (Kg/TJ)	Units	kgCO2 per unit
Grid electricity	-	-	kWh	0.65
Gas/Diesel Oil	43.3	74 800	Tonnes	3 239
Liquefied Petroleum Gases	52.2	65 600	Tonnes	3 424
Natural Gas	50.4	58 300	Tonnes	2 938
Residual Fuel Oil	41.7	78 800	Tonnes	3 286
Petroleum Coke	41.9	115 000	Tonnes	4 818
Wood Pellets	31	132 000	Tonnes	4 092

Beirut Energy Forum 2018


Advanced Energy Performance Monitoring Program

Beirut Energy Forum 2018

Advanced energy performance monitoring program

- Financing of the advanced monitoring system for a subset of applicants
- The monitoring system architecture and devices will be <u>standardized</u>, in order to guarantee the uniformity of the monitoring data
- The monitoring data will be displayed on a <u>online portal</u>, accessible to the owner of the system, LCEC and PoliMi

Advanced energy performance monitoring program18Monitoring system architecture

Beirut Energy Forum 2018

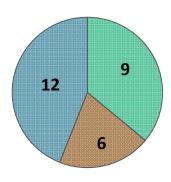
PoliMi experience: ReLab monitoring project

The project "Relab monitoring" aims to investigate the real behaviour of HP systems,

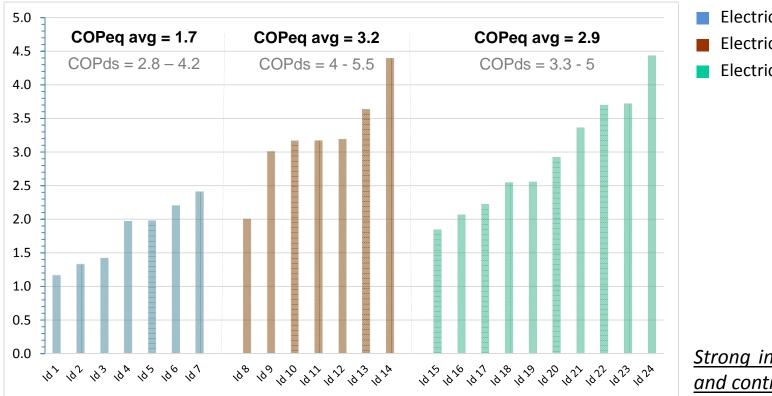
on the basis of the data collected on field from winter 2013-2014 to 2015:

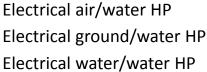
- 25 plants of public buildings (schools, town halls, sport halls, ...)
- 2 plants of residential buildings

Beirut Energy Forum 2018


PoliMi experience: ReLab monitoring project Different features of the HP systems

- heat sources: water, ground, air
- operating modes: heating, cooling, DHW
- system configurations: 1 or more heat pumps
- heating devices: radiators, fan-coil, underfloor heating


- Water source heat pumps
- Ground heat pumps
- Air heat pumps



POLITECNICO MILANO 1863

Beirut Energy Forum 2018

PoliMi experience: ReLab monitoring project Final results: HP performance

Strong influence of design and control errors.

Beirut Energy Forum 2018

POLITECNICO MILANO 1863

21

Conclusions

The NEEREA guidelines for HP projects for heating/cooling/DHW have been presented.

Main aspects:

- accurate evaluation of operating conditions and energy needs to design the HP system and maximize the SCOP
- definition of reference case for the analysis of energy and cost savings and green house gas emissions reduction
- accurate description of calculation methods/simulations tool
- detailed technical drawings
- system monitoring: key role to assess and guarantee HP performance

DIPARTIMENTO DI ENERGIA

NEEREA for Heat Pump Systems and On-field Monitoring Activities

Lebanese Center for Energy Conservation (LCEC) Department of Energy, Politecnico di Milano (PoliMi)

Beirut Energy Forum 2018 26th – 28th of September 2018, Beirut